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Vi=Va="ap + Y2 (A + 20) {(1 — tg,8)* -+ u1g} &= Y/sD'
D={p—(+2u) (1 —us,s)’Y + A+ 20) {2 (A + 2w) (1 — u3,5)* +
+ 2+ A+ 2 uiglurg Vs=p (2.13)

The propagation velocities of the sound waves are similar to the velocities of weak
shockwaves, Therefore, weak shockwaves, as well as sound waves, in a three~dimensional
elastic medium can propagate at three different velocities, one of which equals the trans-
verse wave velocity in the linear approximation,
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Asymptotic expansions for the solution of the Cauchy-Poisson problem of wave motion
of a viscous incompressible fluid with infinite depth are constructed at large Reynolds
numbers, A proof of the asymptotics is given, Examples of plane and spatial motions
are presented in which the asymptotic expansion is determined in the form of a free sur-
face,

In the case of plane motion a solution of this problem was obtained in closed form and
was analyzed in some particular cases in [1] by the integral transformation method, The
problem was solved by the same method in other papers also, A discussion of these papers
is presented in [2],

Moiseev proposed the asymptotic method [3—7] for the solution of this and a number
of other problems,

Theorems of existence and uniqueness for solutions of unsteady linearized Navier-Stokes
equations for the motion of a viscous fluid with a free surface in an openvessel were
obtained in papers [8~10] in the absence and presence of surface tension,

In this paper an asymptotic method is also proposed. However, the method used for
finding the asymptotics leads to simpler and more convenient expressions for numerical
analysis than in [1, 3]

In Sect, 2 asymptotic expansions of the solution at large Reynolds numbers are con-
structed with any arbitrary preassigned degree of accuracy, The construction of the
asymptotics is carried out by the method presented in paper [11]. In this connection the
first and second iteration processes are applied simultaneously to the-equations and bound-
ary conditions, As a result of this, the initial system at each stage decomposes into two
independent problems for the potential and vortical parts of the motion,
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In Sect, 3 a proof of the method is given and an estimate is made of errors of asymp-
totic expansions in spaces with an energy norm,

In Sect, 4 examples of plane and spatial fluid motion are examined which arise as a
result of normal surface tension and initial elevation of free surface, The first several
terms of the asymptotic expansion of the elevation of the free surface are found,

i, Pormulation of the problem, The Cauchy-Poisson problem for linearized
Navier-Stokes equations of motion of a viscous incompressible fluid in a half-space with
a free boundary is examined

0vjot = — yp +e*Av, divv=0, p=p,. +pgz (1.1)

v == a, diva:—:G, L =1{x(z, Y) for t=0 (1'2)
— P+ AL+ 23%00,/02 = — p,(z,y, 1), 0L/0t=1v, for z=0 (1.3)

. [ v S o v
e.( ;Z “+"3f")=T-1(z;y»t)y e* (""&L'*' —552"')=T2(z7 y) t)
limFri*® =0, &6>>1, (in the case of plane motion § > — 1/,)

ree00

F = {v, 0v/dz, 9v/dy, 0v/9z, p, Lg Ty, Ty Dur 8}, 7 = (2 + 2 + &) (1.4)

The quantities in (1,1)—(1. 4) are dimensionless, They are related to dimensional
quantities (which are designated by a prime) by the following relationships:
z = o, y”'—'“y’ 2’ =oaz, {'=al, C,"—'—"HC.. t’=B‘
-4 ) & ’ ot ol a?
a'=-a v =Fv P =pg P P'= P:'?'P;' Py’ =P g Ps
i ol [
Tl”,—pﬁ Tlﬂ 8=—-—-R R=— VB’ zl'—""')"‘;?"q Fa.Fﬂ
Here v’ is the velocity vector, p,’is the hydrodynamic pressure, {* is the elevation
of the free surface, @ is the length unit § is the unit of time, ¥ is the kinematic coef-
ficient of viscosity, p is the density of the fluid, g is the gravitational acceleration, R
is the Reynolds number and F is the Froude number, The origin of coordinates is taken
on the unperturbed surface, The axis Oz is pointed vertically up, The fluid is set in
motion by initial elevation of the free surface {,’ by external surface tension p,’ =

’

= {ps’s T)', T,'} and by initial potential field of velocities a’.

2, Construction of the asymptotics, Asymptotic expansions of the solu-
tion of the problem (1L.1)—(1, 4) for ¢ = ( are constructed in the following form:

k k
v..Ze*v;-l- 2 egi+u, p= 2 ep+ Nehtg
‘ll-'—l famp i=p
k
_ o, %
C= 2 B‘Ci "’- 2 e‘ﬂ'e, + n, T = Djiqy """5':"'-—_ giz (2'1)

fem
aﬂ!at':uz! Z=0, §0”§¢9 c€+2=ei n= 0 =0 f=~1,0,1..)

Here
V=V (2,9 2 t), pi=pi (2,9 2. 8), & = E1 (2 ¥ |D)

are obtained as a result of the first iteration process [11], That is, denoting the left part
by P, we require that
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x x
P(Vom0@), Ve={Jev, e
im0 im0
The coefficients of e, el, €3, ... &5 are subsequently set equal to zero and the fol-
lowing system is obtained for the determination of Vy, Dos be:
3Vo/at TR — VPQ div Vo = 0
Vo = &, §o = Las ¢ = 0; vy, dvo/z, dvy/dy — 0, 2* + y* = o 2.2

0Ly/0t = vy, —Ppo+ Mo = —px— A3, 2=0; V>0, 2+ — o0

For the determination of vy, p; (i 5> 1) we obtain the system
Vot s= — yp + AV, divvy=0; v, = 0,0;=0, t=0; v, dvjoz

avjdy—0, 224 yt—> o0 (v1=0) 2.3
OBt = vyyy ~Py + Moy = — 2004 2,02 — A8y — 208 5,108
z2=0; v;—0, Z > = 0O

The function 6_, in (2, 2) represents the displacement thickness which is well known
in the boundary layer theory [12],

The expressions Av, (i >» 2) are equal to zero, For Av, this follows from the con-
dition of vector a being a potential vector and the first two equations in (2,2). For the
remaining expressions this follows from the first three equations in (2, 3),

Vectors g; (z, ¥, % &, 8) = {€ix+ &iy» €81z} and functions O; (z, v, !, &) and
hi (2, y, 2, t, e) are found using the second iteration process [11] and they compensate
for discrepancies of v;, [;, A, in satisfying boundary conditions (1. 3). The solution is

sought in the form & k % k
v~ Detvi+ D) ey, p~ Nep+ ) el
{=a0 [T | [ imme—l
K x
£~ z el + 2 gig,, € = {Bixs Biyr 881z} (2.9
fas0 imma—

We substitute (2,4) in (1,1)—(1.4), take into account (2,2) and (2. 3) and subsequently
assume z = £s and set the coefficients of &7, €%, . . ., &¥ equal to zero, As a result
we obtain for the determination of g; and h; the following set of equations:

oh ok, 5] d 2,
I I = i (4 ix £;
Lg: % Lew=——p, t=—— —
. 9 B o2 a*
Lfi=—+— -5%- —Afia A= b (=—1,0,.08
oh
m+2

5 Lgmz (m=—3, -2, ..k (€-5+ &, -3, -2 == 0) (2.5)

with boundary conditions at infinity
g—0, h—0; s—>— (2.6)

These boundary conditions result from the requirement that the vectors g€and functions
h; must have the character of a boundary layer, We can show that all h,, = 0.

For h_y, hy this follows directly from the last equation in (2, 5) and (2.6). For the
remaining A,we use the method of mathematical induction, Let us assume that A, =0,
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Then we will show that A, == 0. We differentiate the last equation in (2, 5) with re-
spect to § and use the third equation for { = m, By virtue of the first two equations in
(2. 5) and also (2, 6) we derive that hp,, == (. Now for determination of g; and §,we
derive from (2, 5)

og. og; . o,
Lgix=0, Lgy=0, = el oy
af & a, _
L= -} ——53 —Arfis, - =80 s=0
8;=0,t=0 (=—1,0,1,..0 (g gr=0) 2.7
with inftial boundary conditions
gi=0 t=0, g,—-0, s—>—0c (I=-1,01,..k (2.8)
o g
e =T (20 ), —=Ty(z,4,0), s=0 (2.9)
ag ix av:—lx a”i-lz agi-?z — s
8; e a T " T Tz = 4y (i==0,1, . ..k
(s=10) (2.10)
dg v, v og, .
a:y = ;,w - 7;12 - ;;Z =43 (Va=g,=0)

The boundary value problems (2. 2), (2, 3) and (2, 7)~(2,10) are solved through the
application of integral Fourier transformations with respect to coordinates z and y and
Laplace's transformation with respect to time ¢ [13]. In particular, for the first five terms
of the asymptotic expansion for the elevation of the free surface we have

E - 50 + ek +' . '+8‘£" a‘ = C; + e‘-‘l (2'11)
LOE = LOEy + eLOFs -+ 4LOF,, LOE = LOY, + LOB,

108 = O, [y + 1] + LOpy [ = gty + 1] + O [ — 1] -

Ty 9Ty i 2a 2q%
- m( + '537) {( FFah Vel rany T [c o) — (c'+a$.)’]

. 126 V5 a® 4a* (36* — g}) 16a*
+e [(cs2 T~ g ak)] +et [ EFapr @ +a1\.)’]}
y = et da¥s —e? 4t Vs —et 4a® (30 — ad)
(6*+ ah)? (6® 4 ah)? (e® 4 ad)®

o0 o0
Lof = (oetar, ©f = 2 ( (129, 0l Wazay, o = VETTH
1]

P

(2.12)

The inverse transforms of L-representations for the function ®f are found by using
the convolution theorem and tables [14], The integral representation of the function g
is obtained by applying the inversion formula for the Fourier transformation,

We note that Eqs, (2, 12) can be obtained by another method [15]. For this purpose
the method of integral transformations is applied directly to (1,1)~(1,4) and the trans-
form L®E is expanded in a series with respect to &.

Note 2.1. In the absence of shear stresses the function 6_, is equal to zero and
for the determination of v,, p,, {, we obtain aknown problem of irrotational motion [16],
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Note 2,2, If the shear stresses are not equal to zero on the free surface, then
g.1 5= 0 and the components €™'g_i, and e™1g_;y of the velocity vector increase without
bounds on the free surface z = 0 when e — 0. The physical explanation for this is that
a perfect fluid does not perceive shear forces, At the same time the corresponding con-
tibution of the boundary layer to the elevation of the free surface remains finite (see
(2.12)). Asymptotic expansions for the form of the free surface have nonzero coeffici-
ents for all powers of e which are positive integers, In the absence of shear stresses the
coefficient for e is equal to zero, however, the coefficients for e2, ? , etc, are different
from zero (see (2.12)).

Note 2,3. The method for construction of the asymptotics is described for the
spatial problem, It is apparent that all arguments are analogous for the plane case, In
order to obtain the corresponding formulas, it is necessary to set equal to zero all deri-
vatives with respect to.y, and also to assume that ¥y, vy, Siy= 0( = —1, 0,..k).

Note 2,4, The described method for the construction of asymptotic expansions can
be applied to the case of wave motions of a fluid in a layer or in a vessel of arbitrary
shape,

8, Proof of asymptotic expansions (3.1). Let us introduce Banach
spaces L, (E) of functions f (@), ® = {z, y, z} defined in the half-space £ (z << 0)
and L,(I‘) of functions @ (Y), Y={z, y, 0} defined in the plane I' (z = 0) with a finite

T L@ let={rde, L@ ekt ={er @D
£

Let us further define the Banach space H of vector functions u == {l, U, u,} with

a finite norm (H)  Julg® =l uxf + 1wl + Ju.P 3.2)

We also introduce the Banach space H, of vector functions u which vanish at infinity
and which have first generalized derivatives summable with a square over the half-space

E with a finite norm juld. = ,§ (| Vi [t + | Vi, |2 + | yu, [?) do (3.3)

Following [9], we introduce the notation
E(u,v)=S[2 ou, v, _f'zauu v, +2auz v +(6u: + 6uvr)+
E ox azj

N

oy Ay 0z 9z dy oz
dv dv ou, ou, 9w, 0, ou, ou,,
+(mm ) () (e )+ (e )+
+(-?-"-’-+i”-’°—)}dm (3.4)
or 0z .
For vector functions u & H, Korn's inequality is applicable [9, 17]
| ujf, < ¢E (u, u) (3.9)

Here c. is some positive constant, Now Green's formula which is valid for solenoidal
vectors v and u will be applied to Navier-Stokes equations

\d a a
é(__ e?Au -+ yp) vdo = &E (u, V)—§[ez('—g§;—+ ;:cz )vx+

vor (G S n+ (—p e gE)efar 60
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The values u, ¢, 1 from (2,1) are substituted into the left side of system (1,1)—(1.4).
Using (2, 2), (2. 3) and (2. 7)~(2,10), we obtain

du/dt + yq — e*Au == e*"if, diva=290
n=0, u=0, t=0; u, du/dz, du/dy—0, z* 4 y*—> oo

du_ Ou, du du an
82( T )“EN‘P" 82( 5 T 5 )zsm“’”ﬁ””‘“z

&
— g+ hn+ 2 auz ="y, z2=0; u—0; z——o0 (3.7)
Here
fo={fs, fir F2}y —Ffzx = A1Bxaz — eDMifees —fy= A1g;2_w + eA18xy
2
fz = —¢ (Algk_lz -+ SAlgkz)v Al - axz + ae/z (3'8}
9y, 08y 1z 08, 9.y ]
(Pl (x’ yl t) = [6 a;‘ - gsl J2==0 ] (P'?. (x‘l y! t) = [8 ay - as =0
dv,, ngz

@s (2, ¥, t) = ABx 2[Ry + eRklim0, By = —a—" + 5

Theorem 3,1. Let the vector function f and any of its derivatives with respect
to z and ¥ up to the jth order (; being a sufficiently large number) belong to the space
H, and let functions @;, @,, s together with their derivatives to the ; th order belong
to the space L, (I'). Then for the solution of problem (83, 7), (3. 8) the following estimates

Fe
are vali |Dujg <.Cie¥, | Dinfe<< CA™M* (=01, .5

maxr| Do | << M e* @=0,1,2,..1—2) (3.9)
t A t

C,=(cgm,2(t)dr) -{-2:-:Sn,(-r)dr, ny=m; + | D' |y

= V'3 max {e| Dig, Jr, e | Doy |, | 95 I}

(Here and everywhere in the subsequent text D%, represents an arbitrary mixed deriva-
tive of the function @ (z, y, z) with respect to z and ¥ and of the order /,)
Proof, First, let us note a simple inequality which is valid for functions w such that

w—0for z—= — o lwle<wlg +" nz (3.40)

The validity of this inequality follows from relationships

dw ow ow
== — =2 — g 2 plhadil 2 —_—
Swzdv 2 S Smw dzdy = I§w = 90 < ﬂ“’IIEH = ﬁE<ﬂqu -|—“ > ﬁ:
Now the first equation (3,7) is multiplied by u. We integrate over the domain E
taking into account (3.7) and Green's formula. In Green's formula we preliminarily set

vV = u. We obtai
SRR A up a4 B =

=gkl zS fude -+ e S fe (iux + Panty) - Psu,] dy (3.11)
r

Applying to the left side of (3.11) Korn's inequality (3, 5) and to the right side at first
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the Cauchy~Buniakowski 1nequality, then (3, 10), and also the following obvious inequal-
ities du 2
& d [4
obimg | 5 fe < imd by, < ot 4 Bhulg

we derive
1 4d 2
- 2 Wuld M Il 5 fulg? < e¥ lnofu g + — etéme? (3.42)
mo=mme+ it} , mo=V3imax{elpiy, eiPiip | sl
Utilizing the inequality
fufg + V%ﬂn{}r Y2z, Zz(x)r.gguﬁﬁz_;.xhgr-z
we derive from (3,12) using (3.7)
AZMdt < 4noe"1Z 4 ce¥¥me),  Z(0) =0

From this by means of the method proposed in {19] (pp. $65, 568), we obtain
Z(t) < 2 Sn., (t) dt 4 ekl {S ma® (%) df} 3.43)
0

Then for ! = 0 the first two estimates in (3, 9) follow from (3,183). In order to obtain
estimates (3, 9) for the derivatives, it is necessary to differentiate Eqs, (3.7) and (3. 8)
with respect to » and y a corresponding number of times and to repeat exactly the same
arguments as were used in the derivation of (3,13). It is not difficult to see that in the
formulas now instead of @;, ¢, s and t their derivatives of the same order as in the
left side will be present, The third estimate follows from the second one with the aid
of simple inequalities, For example, in the case of the plane problem for o = 0 we have

x = o] o0
s
maxe | n(z, t)t<( S *}a" dz) ’<{2 S Wz S (%'—i—)zéz] <
—C X3

< (2CoC1A ™) 96k = Mook (3.13%

We note that by virtue of (3, 8) functions C,(t), Ma(t) in estimates (3, 9) depend on
functions which are determined as a result of iteration processes,

At any finite interval of time 0 < ¢ < ¢, we can obtain immediately estimates of the
type (3, 9) from the input data [, p,,a, T,, T, for the problem, The input data have
an exponential dependence on z,.

Lemma 3.1, Leta constant N, exist such that

ﬂDaTrﬂr SMir=1,20<t<<tna=01..)1) te > 1 (3.14)

Then for the solution of the problem (2,7)~(2,9) for i = —1 the following estimates
are valid in the interval (0, ¢,)

dg
x ~12
D ds

“ Da“l.‘ln < Klella’ {ch‘g—lz “I" 3, “ D%0_3 Hr} <K

{ e 1‘19’;8-1:;! E} < Kee'h (3.15)

Here the constants K; are proportional to N,
Proof, From (2.7)~(2,9) we obtain
t

e

H

- =3 L eau 3.6
.g_u.-=§G(8,t-—T)T1(I,ny)d’f, G(Ssu)“ V-“—u ¢ ( )
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From this we derive
1Dag_y lg® <eN*[I (— o0, — 1) + I (—1,0)] < eKi¥to™

I(a,b) = §{§ G t—r1) d‘r}z ds (te>1)
a0

We note that each of the intervals in square brackets is estimated separately, Further,
from (2. 7), (2. 6), using (3.16) and a corresponding equation for £.1y , we obtain

og.. oT
o Bz __(Gs,t—7)D? )d‘r 347
e =5 oga (5, t—1) ( +%
From (8,17) using (3, 14) we derive o
1D%._, lz2 <eNi S [I (— oo, 8)]*ds

-—00

Changing the order of integration in the square brackets, computing the inner integral
and applying successively the following obvious inequalities:

s 8
1-@(2—W)<1—¢(§——w)=®1, <P
x
2 ¢, Y
[01] = lld' 0<u L, - <‘<0
(=) Vﬂ§ y < o0

and also formula 6,281 of {20], we arrive at the first estimate from (3,15). The remain-

ing estimates are derived in an analogous manner,
Lemma 3,2, Let constants N,and N, exist such that (*)

{(V2( D%y + VI DUlp). 1D lg} <Na  (amort,..5)
“ : A8
1D Pl gy SV AP0y, S (348)

Then for solution of problem (2,2) the following estimates hold:

av
1 D%Vollg < Ns + Kat, HD“'gf“H<K4+Kbt

‘D“ 7 g SKe+ Kot (@=0L,...5-2) (3.19)
2 0 b
{“ D* 3;(;: ”%nr HDa Ovoy “T < Ko+ Kot

Here the constants K; do not depend on z, y, 2, ¢, €.
Proof, Let us differentiate the equations and boundary conditions in (2. 2) with
respect to z and  the appropriate number of times depending on which derivative is
being estimated, The resulting vector equation is multiplied by D%y, and integrated

over the domain E taking into account the boundary conditions, Then we find

A (1Dl + M DU = = { DDt (pu + MDY (B20)
r

According to theorem (2, 3) of [21] by virtue of (3, 18), the function Pe -+ AB_; can be

*) Definition of spaces W,! with nonintegral ! (see Sect, 2 of [21]).
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extended to the half-space £ such that
| grad D* (Pan + A1) g < D% (py + 46-1) bwee s el D* (py + A8-1) | '/, - (3.21)

Applying to the last integral in (3.20) Gauss' theorem, the Cauchy-Bumakowski inequa~
lity and (3, 21), we obtain t

10%el + VROl < VIQD%aly + VEUD ) + a1 {1 0% B 3001y,
o o

The first estimate in (3,19) follows then from here, (We note that g_; satisfies condi--
tions (3, 18) by virtue of theorem 2, 3 of [21] and the third group of estimates in (3,15).)
Let us now proceed to the proof of the second estimate in (3,18), From the divergence
equation we derive directly

8v0; "”Oz“ “ :?Jﬂwu 3.22
uDaaz E< +| P oy {E (3.22)

Differentiating the first and second components of the vector equation in (2, 2) with
respect to z, the third component with respect to z or y, subtracting and integrating with
respect to ¢, we obtain

oy v da da L v da da
G fplef TeR-% oo

From here, using (3.22) and the first estimate in (3.19) we find the second estimate,

The estimate for the second derivative of v, with respect to z is derived from a chain
of inequalities which are obtained by differentiating the continuity equations and (3.23)
with respect to z, y, z , with subsequent utilization of the first two estimates from (3.19).
The last estimate follows from the first three using (3,10),

Lemma 3,3, Leta constant N,exist such that for 0 <t < e

|2 (2% Py oag, +2%]  <m @20
s
Wy (T)

Then estimates (3, 19) are valid for v; . The proof of this lemma and Lemma 3.2 are
identical word for word, It is only necessary to replace v, Py, -1, Ps by v, py, 85,
20198 (v;_y, -+ 8;_g:) respectively, and also to set a = 0, {, = 0.

Lemma 3,4, Letconstants N, N, exist such that

4D A,k 1 D8, llg} < M1 (r=1,2; 0<t <o) (3.25)

Then the estimates (3,15) are valid for g;, which are the solutions of problems (2, 7)~
—(2. 9) when ; > 0 in the interval (0, ¢,).
Proof, Let us represent gix in the form of sum gix = w; + g

o d0%q;
Lw; =0, ‘5%1=—b%' wi=qi=07 t =0 (3.26)
a
-5w—._.0 s==0); 'ag‘--Ah w;, ¢i—0, s——0

From the first equation in (3,26) we derive
¢

1 0% < {1 D0t g g
0

The estimate for g; is obtained in the same manner as in Lemma 3.1, Then
1 0%, bz <1 D%, kg + 1 D%, g <Vato + Maelory (3.27)
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The equation and the initial condition for w, in (3, 26) are differentiated with respect
to s. Multiplying by 4w, / ds and integrating over the domain £ taking into account

(3,15), we find t
o<\l
0

The estimate for g, is obtained in the same manner as in Lemma 3.1, Then
gDﬂ aglx {E < + 6?1%

Taking into account (3, 25) and also the fact that g, = 0, we obtain successively the
same estimates for gix and giy{i > 2). The estimate for dg;, / ds is obtained from (3.27)
and the condition div g; = 0. For an estimate of the second derivative #%g;, / ds* at
first the equation is written out for dg;, / 8s and a separation analegous to (3, 26) is per-
formed, The arguments are repeated which are similar to the derivation of (3,28).

Theorem 3,2, Let conditions (3,14) and (3, 18) be satisfied, Here j, and j, are
sufficiently large numbers, Then for the solution of the problem (1,1)—(1.4) on any
finite interval (0 < t< to) for ¢ — 0 asymptotic expansions (2, 1) are applicable for
which estimates of the form (8, 9) are valid, In (3, 9) ¢; depend on functions which enter
into the initial and boundary conditions of problem (1,1)—~(1.4) and on their derivatives
with respect to z and y.

This theorem follows directly from Theorem 3,1 and Lemmas 3,1-3,4, Lemmas 3.3
and 3,4 allow to establish the necessary estimates for functions which are determined in
the pth step of the iteration process and which depend on functions determined in the
two preceding steps, Lemmas 3,1 and 3,2 ensure the necessary estimates for the initial
terms of the asymptotic expansion (2.1),

2 Qw1

D* A1 ag e
s Os

Ld-r < e Ksto

8w1

D2 D* <e’Kato (3.28)

4, Some particular cases, 4.1°, Let us examine the plane motion of &

fluid caused by initial elevation of the free surface
=2ty 620, V=ab, Q' =« (4.1)
Here Q' is the area of the elevated fluid,
1°, According to Sect, 2 we obtain that g_; = (J, 6_, = 0. Then for determination

of Vg, Por Lo we arrive at the problem of motion of an ideal fluid under the action of
initial elevation of the free surface C,.

We compute @[, and using the first formula in (2,12) we obtain

oc
Lo = -:%S €% cos VAE ¢ cos Exdt (4.2)
g .
Expanding cos‘VT&. t in a series and integrating term by term, we find

Z( T, 0 = e (43)

Lo = (zn)x (z2 + b3

7 (a2 + b2)’/|
Here and in the subsequent text T = Tp (b/ (22 + 6%)') are Chebyshev polyno-
mials of the first kind (8.940, [201).
The series (4, 3) converges uniformly for any bounded ®;. however it is inconvenient
for numerical analysis in the case of large values of w,. For these another expression
for [, is indicated,
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At first we express {, from (4.2) using formula 8,953, of [20], in terms of parabolic
cylndrical functions D, (2z)
= _Q exp fsz? _ _ _____t__l‘_fz_t___ 4.4
fo = = Relitay (Da(— )+ D () 2= g, G0
Then, using relationship 3.2 (19) of {22], we derive

fo= L Ro[r—i_ = (";’;zﬂ"@(y-)ﬂ]} , D) .g%@m (4.5)

Substituting in (4. 5) the probability integral @ (i) by its asymptotic representation
(8.254 of [20] in the case arg z #a O and pp.116~117 of (23] in the case argz = 7/2)
and then separating the real part, we find the formula for the elevation of the free surface
Lo which is convenient for large values of @y

b=w _,_Q,,.,v. {2 Vf 3o (% "'%) * é(iﬁ;ﬁi)” T**‘+O(<?Ii'"*"“)}

Atth ALr .
%= 0= wad. e~aeglf, e>1 4

Here and in the following O (m) = cm, where ¢ is a constant, It follows from (4. 6)
that for @1 3> 1 and % > 1
b= — [1 + 0("—.)] (4.7

For @; > 1 and % «€ 1 the principal contribution to {, is made by terms of wave
character.

2°, Let us find the first correction due to viscosity to the elevation of the free sur-
face, Using (2.12) we obtain

g, = ?j_‘qghéb {?-‘-‘ZVV%‘—‘ —tcos YIE t] costadt (4.8)
0

From here we find various representations for §, similarly as was done in the derivation
of (4,3)~(4.T)
a) Representation of §, in the form of a series

2n_ (n+2)an®
b= u(z'+b*>"- 2 (=" 5 oy T (4.9)
b) Expression of &, in terms of pnrabelic cylindrical functions
20t
o= — 2 Re[s +(R.’)"‘ 5}
5, = —1:(—L3-P-/—r—( a(=2) + (= 1) Do (2)] (4.10)

(28~ L]z]hn
<) Representation of §; by the probability integral

", z 3
By = — %Be{m []/—;-‘-ezf@ ('173:) (z‘+9:"+9z--——;—)+
-+ 2% 4 82% -+ 3]} (4.11)
d) Asymptotic expansion of §, for @; > 1
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S S . L i (92)7™ quosin (& — e |

2m (22 4 bY) =
N
8k (K — 1) (2k — I N 1
* 22 e (01N+2 )} *12

=1, gu=—9, gu=09 gu=3 o>1

For % > 1 it follows from here that

576 1
b= (11 0(5)] et (4.13)
3°, Now let us find the next correction due to viscous forces, Utilizing (2,12), we
find
= 2 %a"/«-ﬂ’ costal (VP )dt + LLZQ (1t cos gaN(V ERF) d
Al °

M (u) = cos uC(]/u)+ sinuS(Vu), N (u)=-cosuS (Vu)—sinuC (Vu)

u

cw=1 Zlcostrr, Sw= Y (s 414)

From here, using equations 8. 2532,3 of [20], we derive

1632 2 a2 (n 4+ ! 5
8 = '/a (22 4 b2)2 = 2 (= n (4n + 311 e T"“ (4'15)

The representation of §; in terms of parabohc cylindrical functions has the form

b= Re{[2<b-i/;|z’[)1"/« 22y (+)+ Fou(F)]-
"'n'/z;?y; @ +1b2)’/z [ —BTZ t Sign i‘i I,+0 (-(-0113)], 0, >1 (4.16)

In order to obtain formulas (4.16), in each of the integrals (4, 14), a substitution of
the variable of integration is made setting @ = At?z~%u . The interval of integration
is broken up into two intervals [0, K~9] and [K~9, c0), where K = Af?|z|~}, gisa
positive number and is selected on the basis of the condition that the rejected terms
must be of the same order of smallness, Integrals of the finite interval are estimated ;
in integrals over an infinite interval the functions M and /V are replaced by their inte-
gral representations according to formulas 8.256,, of [20]. In double integrals the tri-
gonometric functions are expanded in Maclaurin series with remainder terms in Lagran-
ge's form, The inner integrals are computed, The integral containing the remainder
term is estimated, In one-dimensional integrals the interval of integration is extended
to zero by subtracting and estimating the corresponding integrals, Then, after computing
the obtained integrals and utilizing the relationship 9.248, of [20], we arrive at the Eq.
(4.16),

From (4, 16) substituting the parabolic cylindrical functions by their asymptotic expan-
sions (8.4(1) [22]), we derive
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Es = t/’ -(;1' L 5 { 2 z (= 1) 233 qancos( —(7—n) (P)

| m,.[s a-"’-—’-"-‘+2-,%;’;-n+o( )l > g =1 @17

Gan = % [(-— }Zi)n (M %)n] - 3(%‘ l'(.— %\ n-i (— —2—)“'1‘]

gp=alat1).. (@ 4+n~1) ay=1
In the case ®; > 1,% >>1 it follows from (4,17) that

S =— n‘fz:x,QV T {x*«}-i Y [8T3 +0 (T:—{)] (4.18)

4,1, Various representations for &, are found by the same method as for £,. We have
a) Representation of &, in the form of a series

e -—-—2—Q—L__-.. n(ﬁ—f— 4\ n n y
§4 n(z z+b2)"l’ (—— ) (2??)? {‘;+2 ©y Tn-rﬁ (419)

b) Expression of &, in terms of parabolic cyiindrical functions

2Qt 12 T4
{Sm o (}\,tz) /2 ﬂ? Ss + 57 M* =+ bg)g} (4,20)

c) Representation of §, by the probability integral
= Qf i [}./.Zj 32 ( ) 9 7 4
1= Re {(b——ﬂx])ﬁ T exp @5 (z° + 3427 +
4 3245 4 88225 + 3152) + 75 -+ 3325 - 20324 + 6452))  (4.21)
d) Asymptotic expansion of £, for u)l >1

- Qe (mm) o o (0 (19—2m) @y
S { ,,% [ 7)) sn (T —)

Cre—Dlln(n—2)(n—3)(n—4) 1 S
2 e Tins + O (W)} , oy 3>1 (4.22)

n=}

=1, qu=—34, qu=2324, qs=—882, gq,=315

e) Asymptotic expansion of §,for w; > 1 and x > 1
b= o |1+ 0 (G (429
Collecting the results of calculations, we find that for the initial condition (4,1) the
asymptotic expansion of the elevation of the free surface has the form
L= 8o+ &%y + &5 + % + Ry, [Rs| < M, (1) ©° (4.24)
The functions §,, &g, Bgy &4 which enter into (4, 24) are represented by formulas

(4. 3), (4. 9), (4.15) and {4.19) in the form of series which converge uniformly for any
finite values of w;. From formulas (4, 4), (4. 10), (4. 16) and (4, 20), {, and §, are
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expressed in terms of parabolic cylindrical functions, Asymptotic expansions for {, and
E; for @3 >> 1 are presented in formulas (4, 6), (4. 12),(4.17) and (4,22). In the case
®y > 1 and x >> 1 the asymptotic expansions are represented by formulas (4, 7),
(4.13),(4.18) and (4.23),

4,2, For comparison with an example given in [1, 16] we examine the motion which
is caused by initial elevation of the free surface concentrated in a point, This motion
is obtained in the transition to the limit for. y — 0, when the action [, is given in the
form (4. 1) according to 24}

Letting the parameter & in formulas (4, 8), (4. 9, (4. 15) and (4.19) approach zero, and
returning to dimensional variables, we find in the examined case for the elevation of
the free surface the first terms of asymptotic expansion with respect to viscosity (the
indices have been omitted)

_*Qgt? & [ ve _ s (— 1" 2n +1 4+ i)l @22
§ == = 2 ( ) N W= 2

= o & (R @n + 2+ i) Gn i)l
(i=012|4)
32 o n, 280 (2n = 3)! gt®
= = Bl Sl B It M 2 y * == 0, W = 2 4,25
= Vre 2TV o ™ EI

The series (4.25) converge uniformly for all finite . The solution can also be pre-
sented in another form

9%t
—_QVEt = =m(_L _9._) (9
—Vznmhz Hy Ho=M, H g + gt +N(4m+ws/+ym
1 81 35 17 44t 33 4 454w
Ho= o1 3 — g5 + ) + (“%“‘W)"z‘wwz* Frymen T TEY
(4.26)

2" it 2n 4+ 3)! -
M—_—M( ) N= N( )(CM 4744); Hi=0, Ho= — Z (=1 %(ﬁm“ Y

For @ > 1 the asymptotic representation of H3 has the form

1 qs nd 3.2" 1
o= 90 E e 3, (ot S 22 +o()]

n=0

In order to obtain Egs, (4.26), it is necessary in (4, 5), (4.11), (4.15), (4. 16) and (4.21)
to pass to the limit for b — 0 and to take advantage of the fact that in this case the
probability integral is expressed by Fresnel integrals [20].

In the case of large values of o it follows from (4, 26)

_ _QVge © = 1 93 1 81 . 315,

'“2V“"“';!;xr;z{“s(T"‘"'/T)[1—7(§V”?@)+72(7?“%+§§'«?)]“
. e a 9 3 17 441 -
-*Sm\T—T)M:E‘ML‘J)—*%(%—W)] TRVIH—  427)

e ([Z( 1""‘"""””“‘"0( v) ]t [2( yldn—t)1Bn nr—t)

ot (@/2)*" = (0/2)*"
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N
1 [ 4n 4 D)l (4n* — 1) (2n —2) (20— 1
+0(W)J+B‘i‘[“’z‘ gyn (4 U (n® — 1) 21 — 2) (20 3)+0<&§2‘1\?H)}

ne=( (“’13‘)_

O3>0, TL0

Equations (4,25)~(4,27) determine the first terms of the asymptotic expansion of the
elevation of the free surface in the case of motion which was caused by a 3-shaped ini-
tial elevation,

We note that for this example, the proof for asymptotic expansions in the form in
which it was carried out in Sect, 3, loses its validity because the initial perturbation has
infinite energy while the estimate of errors for asymptotic expansions in Sect, 3 is given
in spaces with an energy norm, Nevertheless it is evident from Eqs, (4.25)~(4.27) that
the practical convergence of the asymptotic expansion for the elevation of the free sur-
face is achieved if vi vgs

Y=-7, o =—-"<1 (4.28)

Let us compare the obtained solution (4, 25)—(4,27) with known resplts for this exam~
ple,

A, From (4,25)—(4.27) for v = 0 we obtain the representations for the elevation
of the free surface of the ideal fluid in the case of motion cdused by a §-shaped initial
rise {16, 25, 28]

e @A o g8
b= 2 G 2T &
e R [t (D)o (B)] om
Vi :
©= 2(12%;&;;'/:[ (=) + 0] (@31

Comparing the corresponding equations for the elevation of the free surface of a vis-
cous and an ideal fluid, we note that the presence of viscosity introduces into the eleva-
tion additional terms which change the amplitude .nd phase characteristics of the wave,

B, The result obtained in [1] (formula (49), Sect, 8) follows from (4, 25) for vt <& 2*

and o<£ 1 Qatz
E~ Sn (4.32)
With the additional constraint y*e”* > 1, it follows from formula (4.27) that
Q Vit /o n R NEAY:
E~g =, Ve cs’\4 'TT)[“"T‘*"ET(T)} (4.33)

This is also in agreement with results in [1](formula (48), Sect, 8).

C. Now let us compare the elevations of free surface.of an ideal fluid for the cases
where the elevations are obtained due to the action of initial disturbances with finite
and infinite energies:

a) It follows from (4. 6) and (4,27) that waves caused by initial disturbances with
finite energy are damping waves in Contrast to waves caused by d-shaped initial rise,
Furthermore, in the first case the waves have a greater period than in the second.

b) If the following relationships are valid

B b
x=4(z2+b2)<1’ i${<1’ b == const

then the elevations which are being studied coincide with accuracy to infinitely small
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terms,
c) If x> 1, the deformations of the free surface are substantially different,

This indicates that the forward front and the development of the wave caused by a
disturbance (4, 1) with finite energy can be investigated assuming an initial 8-shaped
elevation, If,however, we are interested in the decay of the wave, it is necessary to carry
out additional investigations,

4,3, Let us examine plane motion of fluid induced by pressure impuises

A b ad
Po=mEEEOM  A=pp A @34

Corresponding calculations of first terms in the asymptotic expansion for € — 0 give

for the elevation of the free surface

oo

4
At Yy _ 4 (n-41-48i
N D e L

32 1) 2#»
ao=1, a=0, e3=-—2, as_]/n%jj)f’—)!!—(zn+1)1’ € =2 (4.35)

In analogy to the procedure used in the example 4,1, we exptess E in terms of para=
bolic cylindrical functions
A 4
E=_77 Re k}}o @ A S Aog=1, Asg=2
fk == (— 1) 18, 842k \km=0,2,4), fi=0

9% V}'[‘t exp Yy 22 [ ) i .
A2 =iz Dy, (—iz) 4 57 Dy (— lz)] + (4.36)
2Vt 2Ts 15 2835 1
+ V ik (22 4 b2 [.0)_1—'2 3+24m3T1+0( ):I

The functions §,, are determined in (4,10) and the functions ; in (4,4). From this
we have for 0; > 1

fs=

Ao 2 2k+1

_.1 o
m{ oSS S (gt sin(%ww)

+
k=¢ n=0

8 2k (k4 G Cr—=Dl(= nyy 1

+ V ey E{,T{ (8) 3}27,[ 2 v 2k+1 Tk +0 Q‘)}W)] + 17 fs}

n=2k-1

-

el 2 o s E o) o))+
o (are - B Tz+?§2:z7‘1)+0( ls>}

o= —ar o (- 3), (%) - T (- Tha (= T)u) s =t 60

a0y = —1, a;; = —15, ayp = 45, @33 = —15, a5, = —45, ag, = 630, a3 = —3150

ay¢ = 4725, ayy = —945, @ = aretg|z| ¥, y= 2725z - b2
In the case % >>1 and w > 1 we obtain from (4, 37)
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2
n-2K-1 +

Aw; ik 4 [ S Cr DR D

23
g =. i?"x (z8 -+ b’) f.{ Vﬁﬁh% zgl ¥ (@ (;;_2?‘ e (@2)"
“/z
( )]+-;,-;—.V-‘[ (47‘3—- 157‘3—4—%7‘1) e O(w)]} (4.38)

4.4, Let us examine the case of motion induced by an impulse of normal stress con-
centrated in a point, By passing to the lmit for & — v in formulas {4, 35), (4, 36), by
returning to dimensional variables and omitting the indices, we find

At & vt i b (2 41 + i) ot i
t=Tm 2 <x‘) T M= D) (=" gy Tm e Gmene

i=0 n=90
a2 2n 43 _ _ e
"= V 0 & 2 O O m=0 o=f (.39

xz+

- 4
A Vgt“ O M vold
Emm_ 2 Y50 Z?/*Hi, 1=28 , Hi=N4—= M+(:m}) Hy =0
15 15, i 33
Hi——' ( 8 + )mﬁ) N +( 1“0 + (98) M ‘—V-&-zs/,mx/‘ + V‘szhmnh

1 35 475 45 1575 945
H4=<?— P +3}“53)N+ m—m+m/d~!+
1 147 2895
+ gk Va  VaZhe! -+ TV

ll/=

e ® . 3 24“("12 -+ 3)!
M.-M<4), N==N<‘7:), 3= o 21( )'n CIEET .

For o> 1 it follows

2 2h-H1 ‘;‘-
Ao T (=1F ( Zxn @ nmrt  5n
ey T A - ~— sin (-7 + 5 — 7]+
E= ﬂpnghh}/’{;‘%o,éo \,8) (©/2) <4 Z 4) (4.40)
8 2 guk gy k M= (G 4 ) (— 2m — )y, o
v 2 (%) [ T e T

+ 0 =girm |+ 7 V3]

Formulas (4, 39) and (4. 40) determine the first terms of asymptotic expansion for the
elevation of the free surface in the case where the motion was induced by an impulse
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of normal stress concentrated in a point,
4,5, Let us examine now the case of spatial fluid motion under the action of an ini-
tial pressure impulse and initial elevation of the free surface given in the form

_A4_ b 5 B __ b 2 = 22
P m eyt b= e =280,
a4
A= °g A, B =aB (4.41)

Here A4’ is the magnitude of the pressure impulse and B’ is the volume of elevated
fluid,
Corresponding calculations for the elevation of the free surface give

4 4 ©
At B - PR n424+k
E = V t kz(1) — x (2), (1) __ (7&‘ ) 8 1_
7 2 (Vg TXEVIE =3 4, @n + 1) ek Yz e

k=0 k=0 n=p
[e-]
@ - (xta)n an+1+k i 1
£y 2 By 2n)l gp™ 17k Vet ! Ady=-5, A=0, Ay=-—1
1
Ay =1, Bo="27, B =0 (4.42)
2n 2n —16/(n 4 1) 22" (21 + 1)1 —8 n22n
B W —— [T = o oY n (2")l
2=yt Bismyn A=gs Gnfon  B=w=m I

(Here and in the following text the superscript (1) indicates that the corresponding
expression is obtained from the action of the initial pressure impulse, while superscript
(2) indicates the effect of initial elevation of the free surface,)

It follows that in the case of actions concentrated at a point (b — 0) we obtain (ir
dimensional variables)

At AN ) Bgt? 4 (‘Vt Yad
&= 2nprd 2 ( r ) N5+ S 2 T ®,
=0

i=0

e P pelCrkd e DuE
i i

(4n +" CST " (i=0, 2, 4)
(z)1 =
o_ 2o e [@rkt4pup :
n —_(-5-)1 Eo(—i) GGy (=029
2/ "
16 S Man 32 2
(1) — Q| 8 n
WV A@ron W S mm (4.43)
— n==g

Mg = (— D" [2n +HNE 2", q@ =y =0, ¢ =grr

The series in (4.43) converge for any fixed ©. The solution (4, 43) can be represented
in the form

Eax — At 2 Z T‘U2H(_1)+ Bgt? ® < 2 f(2)
e s L S e, o
=0

i=0

vgis
rl
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Hg_l) = Hgﬂ =0, HV= Fa 35y Iy =Y

, 0 T UT T TRy T Tyt
F 21 119 89
W _ 121 25
B = — 75 — (305 — Tgp) P2+ o T+ | )

\ Dot — Ta) vy,
1) 2'h n 2% [(2n 4 U2
¢ : —qyn B[ A UP
whes S Bn F D01
o-8/s .
@ _ (0] i
(H = [sn (T-'r)’f”(v)]' 031
55 3531 12375 471 1329
(1) . 3
H' = zu + (zmm — giogs + e ) F1— (z*zr = 307 ) Sy, —
131 24225 2025 i Ty
- ('_}_90)2 — 315 + 270)3) Jx/‘J_:/‘) Hf)z) =5 /;‘m L (4.44)
1 31 13 9 15 25
2 e — Pk —— —_
HY = ( PO m’) 1=lgg T3 w’) Ty oy — (ZEG T m3> Tvd -y,

fa 2 4n b
HE®) = _2 —yn2lr{(Cn P on
3 nmmséo( Y @ —©

{ 9-1, ® n 1 ‘
{HP =2__ [cos —) o —-)] >1
e ( T—7)t (“’ ©> )
1 144 2973 9 2 129 9 3
HP = (_" TP T + ”mﬁ) Fa ""'(Al — 23T W} Ty sy +
11 759 627 18 V2
/-o‘a — Bt "5) R
Here, after the expressions for H{P and H{® , their asymptotic representations for
®>> 1 are given in parenthesis
Fy= J,/‘J,/‘ t/4', ~4s! Fa= J:'} *J—Vs + J’,';J-‘,’ iy Ji" = J“(O)/ 8)
In order to obtain formulas (4, 44), we represent the expressions entering into (2, 14)
in the following form:

4a’s — d (
@Far)iE ™ a® ds
4a®h d ]
(s 4+ a?v)’=2az ds ( & + ah > +T\_
4a8 4a® d 4a®)
a5

( (3c* —ad) s d 44’
'\ c’+a}») — 4a° GEF anyp =a ds (38 + ah)?

1 4ad3

a
G ETaE T N EL AR

sa® FTOR
Now, according to rules of operations on transforms (13, 14], we have

st + S Far ) ] (4.45)
8
s

b 325(1) 2 1 8

ED = 74% _3.& +UDED, D= g — o (446)
°B & 1 E(l) 4B 1 3&“’ 432(21)

@ = 2

U R I VA ey + tDER + o Ax 38 ANt ot T AA

EP = 2DE®, £ = DEY,

The functions 5(1) and 5(2) are expressed by Bessel functions [16]. Substituting these
expressions into (4, 46) we find the analogous expressions for &) and g®), which then
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leads to formula (4, 44),
Asymptotic representations for H(S‘) and I—I(a?) are obtained in a manner which is ana-

logous to the procedure for obtaining asymptotic representation of function ;in the
plane case (formulas (4, 16) and (4.17)). The difference is only that in the spatial case
the Bessel function is replaced by its asfrmptotic expansion with a remainder term (20],

From (4, 44) for v = @ we obtain results for the ideal fluid [16], From formulas (4, 43)
and (4, 44) we derive

At Bgt
t=gams oM+ n o), 7 <1, o<t (4.47)

Agi®E ©  Bgi*E o 1 1 'l’)‘
T Tha 8 T T ST E="’Ts'+'ﬁ'(“§" <<t

o>1, To">1 (448)

;~

Formula (4, 42) determines the first terms of the asymptotic expansion for the eleva-
tion of the free surface in the case where the external action is given in the form (4.41),
Formulas (4, 43), (4, 44), (4. 47) and (4, 48) give the first terms of the solution in the
case where the pressure impulse and the initial elevation of the free surface are concen-
trated in the origin of coordinates,

Compared to analogous formulas obtained in [15], formulas (4,43) and (4, 44) differ
by the presence of a term proportional to v"* and in the form of functions with terms
proportional to v and +%,

The authors thank 1, B, Tsariuk and V, I, Iudovich for their help in the work, I, I, Voros
vich and 1, B, Simonenko for discussion of results and attention to the work, and also
V. V. Musatov who made a number of useful comments,
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