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The propagation velocities of the sound waves are similar to the velocities of weak 
shockwaves. Therefore, weak shockwaves, as well as sound waves, in a three-dimensional 
elastic medium can propagate at three different velocities, one of which equals the trans- 
verse wave velocity in the linear approximation. 
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Asymptotic expansions for the solution of the Cauchy-Poisson problem of wave motion 
of a viscous incompressible fluid with infinite depth are constructed at large Reynolds 
numbers. A proof of the asymptotics is given. ExampIes of plane and spat&i motions 

are presented in which the asymptotic expansion is determined in the form of a free sur- 
face. 

In the case of plane motion a solution of this problem was obtained in closed form and 
was analyzed in some particular cases in p] by the integral transformation method. The 
problem was solved by the same method in other papers also. A discussion of these papers 
is presented in [2]. 

Moiseev proposed the asymptotic method 13-71 for the solution of this and a number 
of other problems. 

Theorems of existence and uniqueness for solutions of unsteady linearized Navier-Stokes 
equations for the motion of a viscous fluid with a free surface in an openvessel were 
obtained in papers [S-l O] in the absence and presence of surface tension. 

In this paper an asymptotic method is also proposed. However, the method used for 
finding the asymptotics leads to simpler and more convenient expressions for numerical 
analysis than in [l. 35 

In Sect. 2 asymptotic expansions of the solution at large Reynolds numbers are con- 
structed with any arbitrary preassigned degree of accuracy. The construction of the 
asympFoFics b carried out by the method presenttd in paper Ill]. In Fhis cclnneCtiOn the 
first and second iteration processes are applied simultaneously to theequations and bound- 
ary conditions. As a. result of this, the initial system at each stage decomposes into two 
independent problems for the potential and vertical parts of the motion. 
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III Sect. 3 a proof of the method is given and an estimate is made of errors of asymp- 
totic expansions in spaces with an energy norm. 

III Sect. 4 examples of plane and spatial fiuid motion are examined which arise as a 
result of normal surface tension and initial elevation of free surface. The first several 
terms of the asymptotic expansion of the elevation of the free surface are found. 

1, Formulrrion of the prsblsm, The Cauchy-Poisson problem for linearized 
Navies-Stokes equations of motion of a viscous incompressible Rufd in a half-space w&b 
a free boundary is examined 

av/at = -_p+-e2Av, divv--Oo, p=Pr+pgz W) 
v == a 

; 
diva=& +6&y) for t=o W) 

- P + &II + 29 au,/az = - p* (5, y, t), at/at = v, for z z 0 WI 

($2 x 
( 

a0 &I 

lim Frltb =ai, 

-t z az 1 
=G(wH, .c+ 

c 

au, av 
a,+-& 

) 
= Ta@, y, 0 

6 > Ifs (in the case of plane motion 6 3 - f/a) 
r4m 
F E (v, WGk, c?vl@, ih/dz, p, g*, T,, T,, P*, a}, T = (9 + y2 + z*)“* (1.4) 

The quantities in (1. I)-{l, 4) are dimensionless. They are related to di~~~onal 
quantities (which are designated by a prime) hy the following relationships: 

XI BCtX, y’ = w, Z’cag, 6’3cxc, &‘=*a&. t’=pt 

d = +-El9 v++, p’=Q -+, pr’ = p +r, P*? = P $- P*. 

T 1.13’ = p+T,,, g++- R+ k-c+, F==-$ 

Here v’ is the velocity vector, pr’ is the hy~~y~~c pressure, c’ is the elevation 
of the free surface, a is the length unit f3 is the unit of time, v is the kinematic coef- 
ficient of viscosity, p is the density of the fluid, g is the gravitational acceleration, R 
is the Reynolds number and P is the Fronde nnmber, The origin of coordinates is taken . . 
on the unperturbed surface, The axis oz is pointed vertically up. The fluid is set in 
motion by initial elevation of the free surface &’ by external surface tension pn’ zs 

= {p*‘, I’,‘, Tai} and by fnltial potential field of velocities a’. 

2, Coonrtruotfon of thr rrymptotior, Asymptotic expansions of the solu- 
tion of the problem (1, I)-(1,4) for e -c 0 are constructed in the following form : 

v= i E'V~ f $ S'gi +U, p = i sipi $- $ e’hi _t Q 
iatJ i--l +=a i-8 

&= $odi, -+ i ew, +q, f& = viz, -!L g,, (2.~) 

atl(dt=~~, Lo, %1_~*,t+~=e;=t7=0, t=“f, (rt-i,O,i..,) 

Here 

are obtained as a result of the first iteration process [ll]. That is, denoting the left part 
by P, we require that 
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p (vk) - 0 (8’1, 

Tht Cdff~@SS of to, e’, 8’, . . . fh are subsequentZy set equal to zeta and the fol- 
lowing system ia obtained for the defsrminatfon of vo, po, b : 

ay@/at = - VP0 div v. = 0 

v, = a, Q = L t = ~Y~,~Y~~X,~V~~~~,~ +ys-+oo @*3 

@c&t = voz* -p. + go = - p* - k8_1, z = 0; Yg * 0, 2 -+ - 00 

For the detennlnadon of vi, pf (I > 1) we obtain the system 

ilv,jat = - vpi + L$Y~_~, v4 = 0; = 0, = 0, = 0; avda3: 

av&?y-*o, x2+ y2-+ 00 (v-l = f-9 (2.3) 

a~at = Viz, -pi + h-f;, = - ~~~,~~~ - ~4.s - ~g~%,~~s 

z= 0; vj40, z+- OQ 

The function, 8, in (2.2) represents the displacernant thickness which is well known 
in the boundary layer thq 112% 

The expressiona Av&t > 2) are equal to zero. For Av, this follows from the con- 
dition of vector a being a potential vector and tbe first two equations in (2.2). For the 
remaining expresions this follows fiQm the f&t three equations in (2.3). 

Vectofil g, (z, y, z, t, 4 = (gtst cttlrt 8&) and funcdons ef (z, y, 4 e) and 
hf (3, y, z, t, e) are found using the second iteration pro@ss [ll] and they compensate 
for discrepncies of vt, cf, hi in satisfying bound conditions (1.3). The soludon is 
sought in the form K 

v-r:ety,+ i s&g*, p-&‘pt+ i: 8% 
t-0 b-1 bo k-1 

We substttute (2.4) in (1,1)-(1,4),take into account (2.2) and (2.3) and subsequently 
assume 2 = 4s and set tie coefficient3 of 8-l, E*, . . ., ek equal to zero. As a re&t 
we obtain for the determination of gf and taf the foU&ing set of equations: 

ah,+% -= -b?,, as (m=-3, -2, . ..k) u-5 I g-4, g-m, g-w = 0) (2.5) 
with boundary conditions at infinity 

g-& fa,-+O; s--t- 00 (2.6) 

Those boundary conditiom result &om the requirement rhat the vectors g+d ftmctions 
II,~ must have the character of a boundor) layer+ We can show that all I8, 3 0. 

For h_I, h,, this foilows directly from the last equatia in (2.5) and (2.6). For the 
remaining hiwe use the method of mathematical induction. Let us assume that h,,,=O. 
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Then we will show that h,,, mr 0. We differentiate the last equation in (2.5) with re- 
spect to s and use the third equation for t = m, By virtue of the first two equations in 
(2.5) and also (2.6) we derive that h,,,+,, _ P”= 0. Now for determination of gf and Qr we 
derive from (2.5) . 

Lg,, = 0, L&l = 0, 2$__--_ ag.is agi, 
as ay 

Lf,z .g-$ - AJt_t, -$ = gir* S = 0 

Qi = o,t=o (in”-i,o,i ,... k) (g-a. 8-t = 01 (2.7) 

with initial boundary conditions 

lx, =o, t=o, gj-4 s-+--00 (it--r,o,i )... k) 

ag_lr - = T1 t.2, I/, 0, aL, 
as as = Toky, % s--o 

(248) 

(2 -9) 

agis asvi-lr % 11 as, 22 
as =--- aZ 

---"--~---"-'~,~ 
az as (iieO,i,...Ir) 

The boundary value problems (2.2). (2.3) and (2.7)-(2.10) are solved through the 
application of integral Fourier transformations with respect to coordinates z and g and 
Laplace’s reformation wi* respect to time t n3& In particular, for the first five terms 
of the asymptotic expansion for the elevation of the free surface we have 

(2Zil) 

The inverse transforms of L-representations for the function ipf are found by using 
the convolution theorem and tables [Ml, The integral representation of the function E 
is obtained by applying the inversion formula for the Fourier transformation. 

We note that Eqs. (2.12) can be obtained by another method [15]. For this purpose 
the method of integral transformations is applied directly to (1, X)-(1.4) and the tram- 
form L&S is expanded in a series with respect to e. 

Note 2.1, In the absence of shear stresses the function 6_* is equal to zero and 
for the determination of vO, Po, &, we obtain a known problem of &rotational motion PS]. 
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Note 2.2. If the shear stresses are not equal to zero on the free surface, then 
&I # 0 and the components s-‘g_i, and Cig_iv of the velocity vector increase without 
bounds on the free surface z = 0 when e + 0. The physical explanation for this is that 
a perfect fluid does not perceive shear forces. At the same time the corresponding con- 
tribution of the boundary layer to the elevation of the free surface remains finite (see 
(2.12) ). Asymptotic expansions for the form of the free surface have nonzero coeffici- 
enU for all powers of c which are positive integers. In the absence of shear stresses the 
coefficient for p: is equal to zero, however, the coefficients for e2, e3 , etc. are different 
from zero (see (2.12) ). 

Note 2. 3. The method for constnlction of the asymptotics is described for the 
spatial problem. It is apparent that all argumants are analogous for the plane case. In 
order to obtain the corresponding formulas, it is necessary to set equal to zero all deri- 
vatives with respect to-y, and also to assume that vu, “iv, giy= O(i = -1, O,...k). 

Note 2.4. The described method for the construction of asymptotic expansions can 
be applled to the case of wave motions of a fluid in a layer or in a vessel of arbitrary 
shape. 

3. Proof of rrymptotlc l Xp8n8ion: (3.1). I.&us introduceBana~h 
spaces L, (IS) of functions f (o), 0 = {z, y, Z} defined in the half-space E (Z < 0) 
and L;(r) of Functions Cp (T), Tz= (3, y, 0) defined in the plane r (z = 0) with a finite 

(3.1) 

Let us further define the Banach space H of vector ftmctions u lcpl (4, u,, uz) with 
a finite norm 

(a) uuHa”=II~xP+#~P+B~LUa (3.2) 

We also introduce the Banach space a, of vector functions U which vanish at infinity 
and which have first generalized derivatives summable with a square over the half-space 
E with a finite norm 

II&,== ~~lv~~l~+/V~UI~+IV~il~~~ (3.3) 

Following [Sj, we introduce the notation 

E (11, v) = 2 % av, 
acaz, 

For vector functions u E Hi Korn’s inequality is applicable @, 1’71 

Uuj$r,~cE(u~ u) (3.5) 

Here c. is some positive constant, Now Green’s formula which is valid for solenoidal 
vectors v and u will be applied to Naviet-Stokes equations 

s ’ (- @Au -+- vp) vdo = e$E (u, V) - 
E 
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The values u, q, 11 from (2.1) are substituted into the left side of system (1.1)~(1.4). 
Using(2. Z), (2.3) and (2. ‘I)-(2. lo), we obtain 

&i/S=t + vq -- esAu = ek+lf , div u = 0 

‘1=0, u=o, t=o; u, au/ax, au/ay-+o, x2 + y9-+ 03 

Here 

f zz (f,, fv, f,), -f, = A&-u + ~A&cx, -f,, = Alguv + hgk, 

f, t --E (A&_,, + ehdtiz), AI = -& + -& (3.8) 

Theorem 3.1. Let the vector function f and any of its derivatives with respect 
to x and y up to the jth order (j being a sufficiently large number) belong to the space 
B, and let functions cpr, gp,, ‘pa together with their derivatives to the i th order belong 
to the space L, (I?). Then for the solution of problem (3. ‘I), (3.8) the folIowing estimates 

maxr J D%j I & M&k (a=0,1,2,...I-2) (3.9) 

C I= [ci m~yr)d&- 2&(T)BT, n2 = mz -k IPfll~ 
0 

m2 = 1/3ma=~el~DO’rp,Rr~ell~z9)r~lr,~w~~~ 

(Here and everywhere in the subsequent text .& represents an arbitrary mixed deriva- 
tive of the function cp (5, y, z) with respect to x and y and of the order 2 . ) 

Pr o o f. First, let us note a simple inequality which is valid for functions UJ such that 
w+Ofor z--,-m (3.iO) 

The vaIidity of this inequality follows from rektionships 

Now the first equation (3.7) is multiplied by II. We integrate over the domain E 

taking into account (3.7) and Green’s formula. In Green’s formula we preliminarily set 
v=u. Weobtain ’ 

-+ -$ I II u /JR” + 3.. Ihiir21 + Es E Oh u) = 

=E *+I 
d 

fudo + ekfl 
s i.e (crux + ‘PSU,,) +wzl dy (3.11) 
r 

Applying to the left side of (3.11) Kern’s inequality(3.5) and to the right side at first 
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the Cat&y-Bunialtowshi mequaiity, then (3.10). and also the following obvious inequal- 
ities 

we derive 
2 !jrr ~a~~~~~,~~a~~~s + &sir& 

(3.f2) 

ho-m+UfR , ma = 1/3 max (a 1 qh llrt 8 IIcp~llr* I ‘paup) 
Utilizing the inequa&y 

lultH + v’icjiq/,< v’zz, ~(~)~~un~s+~~~~s 

we derive from (3.12) using (3.7) 
dZ”/dt $ 4naskffZ f ceakm& Z(0) =o 

From this by means of the method propomd in g9] (pp. 565,8&S), we obtain 
f 

2 (t) =g 28-l 
f 

no (z) dr + 3csfz {iWV%, d7)lh (3.13) 
0 0 

Then for I = 0 the first two estimates in (3.9) follow from (3.13). In O&X to obtain 
estimates (3.9) for the derivatives, it is neoessary to differentiate Eqs. (3.7) and (3.8) 
with respect to 2 and y a cxmesponding number of times and to repeat exactly the same 
ardor as were used in the derivation of (3.13). Ir is not dif~cult to see that in the 
formulas now instead of ‘pl, ~a, cpa and f their derivatives of the same qrder as in the 
left side witi be present. ‘khe third estimate follows from the second one with the aid 
of simple inequolitfes. For example, in the case of the plane problem for a = 0 we-have 

< (2CoC&-l)‘kk = &eh’ (3.13’) 

we note that by virtue of (3.8) functions C,(t), Ma(t) in estimates (3.9) depend on 
functions which are determined as a result of iteration processes, 

At any finite interval of time 0 < t < t, we can obtain immed~a~ly estimates of the 
type (3.9) from the input data c*, p*, a, T,, 7’s for the problem. The input Efata have 
an exponentfal dependena on t,. 

Lemma 3.1. Let a constant X1 exist such that 
~D=T,~“5N~(~~~,2;o<t<to;u~O‘~,...1~l~:~O>~ (3.14) 

Then for the solution of the problem (2.7)~(2.9) fos i = --t the following estimates 
are valid in the interval (9, te) 

Here the: constants Kt are pnoportfOna1 to N,. 
P r o o f. From (2. ?)-(2.9) we obtain 

(3.15) 

f 

‘h!, - s G (a, t - z) h (I, y, T) drr G @, ~1 = 
0 
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From this we derive 

855 

llD=g_z,ll~2d~NlaIz(--oo, - i) + z (- i, O)] < EKl%‘l’ 

z&b) = j{\G(x,t--r)drjzdx (f,>l) 
a ; 

We note that each of the intervals in square brackets is estimated separately. Further, 
from (2.7). (2.6), using (3.16) and a corresponding equation for g_lv , we obtain 

D=dg-li=__5G(x,t_-r)D=(~+~~ 0% 
ax 

0 

(3.17) 

From (3.17) using (3.14) we derive 

1 Dog,, jlEs Q efW 5 [I (- OQ, @IS ds 
--oo 

Changing the order of integration in the square brackets, computing the inner integral 
and applying successively the following obvious inequalities: 

i-.(+_)<i-u$j+Dr, W<uJl 

@@,=2J 

v/x0 

e-“*dy, O<U<L -oo<;go 

and also formula 6.281 of PO]. we arrive at the first estimate from (3.15). The remain- 
ing estimates are derived in an analogous manner. 

Lemma 3.2. Let constants Ns and N, exist such that ( * ) 

{@ (IID”a~+ I/xflD%il& ADaall~,~B~a (aPo,r,...i.) 

II D”p* nw~,*(r) G h II D-6 II w;/*cr, < Na (3.18) 
a 

Then for solution of problem (2.2) the foIlowing estimates hold : 

(3.i9) 

[DavojJH B Nc+Rd, ~D'$$<KI+Kd 

IIDa~l~H<K6+K,t (=-o.l,...i-cr) 

{UD=~~,l~D=~k,~D’~Ur)CK~+K~t 

Here the constants Ki do not depend on z, y, s, t, e. 
Proof. Let us differentiate the equations and boundary conditions in (2.2) with 

respect to s and P the appropriate number of times depending on which derivative is 
being estimated. The resulting vector equation ir multiplied by D’v, and integrated 
over the domain E taking.into account the boundary conditions : Then we find 

+ -$ [ 1 D=vo lh2 + h 1) D”bj r21 = - s D=vosD= (pa + LO-11 dy 
I? 

(3.20) 

According to theorem (2.3) of @l] by virtue of (3.18). the function pm + hO_r can be 

l ) Definition of spaces WQ with nonintegral I (see Sect. 2 of [21]). 
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extended to the half-space E such that 

II grad Da !P* + htL) 11~ < D” (P* + M-11 IlwslcEj Q c II Da (P+ + JJ~-I) llw~~s,,, W*) 
3 

Applying to the last integral in (3.20) Gauss’ theorem, the Cauchy-Buniakowski inequa- 
Uty and (3.21). we obtain I 

The first estimate in (3.19) follows then from here. (We note that 8_1 satisfies condi-- 
tions (3.18) by virtue of theorem 2.3 of pl] and the third group of estimates in (3.15). ) 
Let us now proceed to the proof of the second estimate in (3.18). From the divergence 
equation we derive directly 

~D$$+$$+~D~ %/jE (3.22) 

Differentiatinfj the first and second components of the vector equation in (2.2) with 
respect to z, the third component with respect to 2 or f/, subtracting and integrating with 
respect to t, we obtain 

(3.23) 

From here, using (3.22) and the first estimate in (3.19) we find the second estimate. 
The estimate for the second derivative of v0 with respect to z is derived from a chain 

of inequalities which are obtained by differentiating the continuity equations and (3.23) 
with respect to t, y, z , with subsequent utilization of the first two estimates from (3.19). 
The last estimate follows from the first three using (3.10). 

Lemma 3.3. Let a constant N,exist such that for 0 < t < te 

(3.24) 

Then estimates (3.19) are valid for vi . ,The proof of this lemma and Lemma 3.2 are 
identical word for word. It is only necessary to replace vat po, 8-1, P* by vi, pi, %_I, 

2a/& (vI+ + gt_sL), respectively, and also to set a = 0, f+ = 0. 

Lemma 3.4. Let constants N1, Ns exist such that 

(II D=‘A,, #r~ II Da&_, IIE 1 G ~‘1 (r-=%1; o-zt<q (3.25) 

Then the estimates (3.15) are valid for gi, which are the solutions of problems (2.7)- 
-(2.9) when i > 0 in the interval (0, to). 

Pro o f. Let us represent gix in the form of sum gh = Wi + qi 

LWi_O, +$$; ?Q = Qi 3 0, t = 0 (3.26) 

awi 
x =o, m-0; 2~ Ali; Wir Qj’O, s4-00 

From the first equation in (3.26) we derive 

The estimate for pi is obtained in the same manner as in Lemma 3.1. Then 

11 Dog,, BE 4 U Dawi UE + U D=q, llE G N do + NIE”‘(/’ (3.27) 
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The equation and the initial condition for ~01 in (3.26) are differentiated with respect 
to s. M~tiplylng by am, : as and integrating over the domain E taking into account 

The estimate for q1 is obtained in the same manner as in Lemma 3.1. Then 

(3.28) 

Taking into account (3.25) and also the fact that g, = 0, we obtain successively the 
same estimates for gti and giv(i >/ 2). The estimate for 6’gc / 8s is obtained from (3.27) 
and the condition div gi = 0. For an estimate of the second derivative a2gk / as2 at 
first the equation is written out for agi, I as and a separation analogous to (3.26) is per- 
formed. The ar~men~ are repeated which are similar to the derivation of (3.23). 

Theorem 3.2. Let conditions (3.14) and (3.18) be satisfied. Here jr and 1s are 
sufficiently large numbers. Then for the solution of the problem (1.1)-(1.4) on any 
finite interval (0 < t < to) for E -, 0 asymptotic expansions (2.1) are applicable for 
which estimates of the form (3.9) are valid. In (3.9) cI depend on functions which enter 
into the initial and boundary conditions of problem (l. l)-(1.4) and on their derivatives 
with respect to x and y. 

This theorem follows directly from Theorem 3.1 and Lemmas 3.1- 3.4. Lemmas 3.3 
and 3.4 allow to establish the necessary estimates for functions which are determined in 
the p th step of the iteration process and which depend on functions determined in the 
two preceding steps. Lemmas 3.1 and 3.2 ensure the necessary estimates for the initial 
terms of the asymptotic expansion (2.1). 

4, Same prrtt~utrt oa86tr 4.1’. Let us examine the plane motion of a 
fluid caused by initial elevation of the free surface 

+Q b * YGq-iP b>O, b’=ab, Q’=a*Q (4.0 

Here Q’ is the area of the elevated fluid. 
1’. According to Sect, 2 we obtain that g_, = 0, 8, = 0. Then for determination 

of Vo, PO, 60 we arrive at the problem of motion of an ideal fluid under the action of 
initial elevation of the free surface c*. 

We compute @c, and using the first formula in (2.12) we obtain 

Expanding co,r/rE t in a series and integrating term by term, we find 

(4.2) 

to = Q ; (- 1)” &- @lnTr&+l, “1 = (xa $,* 
x (9 + lJy’/’ _(# 

(4.3) 

Here and in the subsequent text T, = T, fb ! (9 4 b~~“~) are Chebyshev polyno- 
mials of the first kind (8.940, (20-J). 

The series (4.3) converges uniformly for any bounded o i, however it is inconvenient 
for numerical analysis in the case of large values of oi. For these another expression 
for co is indicated. 
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At fkst we express 60 iiom (4.2) using formula 8.953, Of @O], In terms Of parabolic 
CyuI¶CMcal. fancdo5l-s ‘Dp (z) 

Then, using ralationahip 3.2 (19) of @ZJ, we derive 

Qqu> -zs 

Substituting in (4.5) the probability fzztegral @ (u> by its asymptotic representation 
(8.254 of @O] fn the cue arg z + 0 and pp.116-117 of 1231 in the WC a~&== a/2) 
and thr?n sqarating the real part, we find the formula for the riev@~ of the free surface 
to which is cctnvwkient foe laqe values of 01 

2’. Let us find the first correctfan due to viscosity to the elevation of the f&e SW 
face. Using (2.12) we obtafn 

From here we find various representaffons f&r & similarly as was done in the derivation 
of (4.3)~(4.7) 

b) Expre2sion of 8% in terms af pa&ok cylhdrical fhctions 
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ES = 2rr(z~~b,)J~e-x i (+)2nqa,sin(+ -(iiw22n)cp) + 
-0 . 

+ 5 8k (kz ---2;f:- ‘)!’ Tk_2 + 0 (-&)I 
k=s 

(4.12) 

For X > i it follows from here that 

(4.13) 

3*. Now let us find the next correction due to viscous forces. Utilizing (2.12). we 
find 

%*=$$I% “%-E* cos %zA!f (l/P) d% + 
0 

M(u)=cosuC(T/u)+sinLLS(~), nl(U)=cosuS(~u)-sinUC()/U) 

C(u) = J;[cos%U%, S (u) = 1/‘: S sin %V% (4.14) 
0 0 

From here, using equations 8.253,,3 of GO], we derive 

Es = n+4 (4.15) 

The representation of %a in terms of parabolic cylindrical functions has the form 

Q 1 
- n’llhI/t ($ + bZ)% c 8T3-!$f + ~TI -!- 0 (&,)I 9 a,>1 (4.16) 

In order to obtain formulas (4.16). in each of the integrals (4.14). a substitution of 
the variable of integration is made setting a = ht*x-*u . The interval of integration 
is broken up into two intervals 10, K-9) and [K-a’, oo), where K = hP 1 x 1 -l, q is a 
positive number and is selected on the basis of the condition that the rejected terms 
must be of the same order of smallness. Integrals of the finite interval are estimated ; 
in integrals over an infinite interval the functions Mand N are replaced by their inte- 
gral representations according to formulas 8.256,,, of @O-j. In double integrals the tri- 
gonometric functions are expanded in Maclaurin series with remainder terms in Lagran- 
ge’s form. The inner integrals are computed. The integral containing the remainder 
term is estimated. In one-dimensional integrals the interval of integration is extended 
to zero by subtracting and estimating the corresponding integrals. Then, after computing 
the obtained integrals and utilizing the relationship 9.248, of yZO], we arrive at the Eq. 
(4.16). 

From (4.16) substituting the parabolic cylindrical functions by their asymptotic expan- 
sions (8.4(l) p2] ), we derive 
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a, = a(a + 1) .._ (a f n - i), a0 ‘I 1 

Inthecase o~>l,X>l itfoUowsfrom(4.17)tbat 

(4.18) 

4. I. Various repnsentations fox & are found by the same me&d as for &,. We have 
a) Representation of b in the form of a series 

b) Expssion of & in tetms of patabolic ~~~~i~l functions 

(4.19) 

(4.20) 

c) Representation of gr by the probability integral 

+ 324.~~ + 88223 + 3152) -I- z8 + 33z8 -+ 2932” + 64hplj (4.2f) 

d) Asymptotic expansion of $, for ol > 1 

& s Qta 1 _ ._ e-X i q4, (.!$)*mn sin (L$. _ ‘w) _ (ni”lp 
a (x8 + b?f’* 

2’ 

n-0 
I 

N (2 -224 n - 1)!! n (n - 2) (n - 3) (n - 4) 
ww 

qn-sl -k 0 (,+)I , 4 3= 1 (4.221 
=1 

e) Asymptotic expansion of E4 for oI >> 1 and x > 1 

Er = 24Q 
nk (~9 + bs)* 

[T4 + 0 (&#)I (4.23) 

Collecting the result of calculations, we find t&&t for the initial condition (4.1) the 
asymptotic expansion of&e ebation of the ftce svrfece has the form 

s = 160 + 8% + eS%s + 83, + JL i .% I Q Jfo (0 eb (4.24) 

The functions &,, %,, Es, & which enter into (4.24) are rcptesented by fotmu’tas 
(4.3). (4.9). (4.15) and (4.19) ir8 tbc form of se&% wbicb convqe uniferrnly for any 
finite values of o I. From formulas (4.4). (4.10). (4.16) and (4.20). &, and Et am 
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expressed in terms of parabolic cylindrical functions. Asymptotic expansions for Z;,, and 
fr for w1 > 1 are presented in formulas (4.Q (4.X& (4.17) and (4.22). In the case 
ol. > 1 and x > 1 the asymptotic expansions are represented by formulas (4.7). 

(4.13),(4.18) and (4.23). 
4.2. For comparison with an example given in [l, 161 we examine the motion which 

is caused by initial elevation of the free surface concentrated in a point. This motion 
is obtained in the transition to the limit for. b + 0, when the action & is given in the 

form (4.1) according to 124% 
Letting the parameter b in formulas (4.31, (4.9), (4.15) and (4.19) approach zero, and 

returning to dimensional variables, we find in the examined case fox the elevation of 

the free surface the first terms of asymptotic expansion with respect to viscosity (the 

indices have been omitted) 

E -*Qgt2 ’ ‘M qi, a 
nx* a ! i=o 

,22 
(i=O,2,4) 

% - (4.25) 

The series (4.25) converge uniformly for all finite o. The solution can also be pre- 
sented in another form 

Hi,=M, HZ=- (-++&, +N(;+$;+j& 

(4.26) 

“I2 00 

M = M f , N =N 0 (CM. 4.714); Hz-O, Ha= &*, 2 
TX-1 

For w > 1 the asymptotic representation of Ha has the form 

In order to obtain Eqs. (4.26). it is necessary in (4,5), (4.11). (4.15). (4.16) and (4.21) 
to pass to the limit for b -* 0 and to take advantage of the fact that in this case the 
probability integral is expressed by Fresnel integrals [ZO]. 

In the case of large values of o it follows from (4.26) 
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Ewations (4.25)-(4.27) determine the first terms of the asymptotic expansion of the 
elevation of the free surface in the case of motion which was caused by a &shaped ini- 
tial elevation, 

We note that for this example, the proof for asymptotic expansions in the form in 
which it was carried out in Sect, 3. loses its validity because the initial perturbation has 
infinite energy while the estimate of errors for asymptotic expansions in Sect. 3 is given 
in spaces with an enemy norm. Nevertheless it is evident from Eqs. (4.25)-(4.27) that 
the practical convergence of the asymptotic expansion for the elevation of the free sur- 
face is achieved if vt 

TP--- Q)s=- zs ’ ‘$” -zg f (4.28) 

Let us compare the obtained solution (4.25)-(4.27) with known rest& for this exam- 

Pk. 
A. From (4,25)-(4.27) for v = 0 we obtain the representations for the elevation 

of the free surface of the ideal fluid in the case of motion caused by a b-shaped initial 
rise [l6, 25, 263 

50_ Q@* g (_ ijn(2n -i-i)! @2n, -- 
ax* (4n + %)! 

(4.29) 
?I==0 

Comparing the corresponding equations foa the elevation of the free surface of a vis- 
cous and an ideal fluid, we note that the presence of viscosity introduces into the eleva- 
tion additional terms which change the amplitude ,_nd phase characteristics of the wave. 

I?. The result obtained in [I] (formula (49},Sect. 8) follows from (4.25) for vf 4 X~ 
and 041 

s_& (4.32) 

With the additional constraint Y*o*‘~ > 1 , it follows from formula (4.27) that 

This is also in agreement with results in [l] (formula (48), Sect. 8). 
C. Now let us compare the elevations of free surface.of an ideal fluid for the c;1ses 

where the elevations are obtained due to the action of initial disturbances with finite 
and infinite energies : 

a) It follows from (4.6) and (4.27) that waves caused by initial disturbances with 
finite energy are damping waves in contrast to waves caused by b-shaped initial rise. 
Furthermore, in the first case the waves have a greater period than in the second. 

b) If the following relationships are valid 

x”4$$+, &<l, b==conat 

then the elevations which are being studied coincide with accuracy to infinitely small 
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terms. 
c) If x > 1, the deformations of the free surface are substantially different. 

This indicates that the forward front and the development of the wave caused by a 

disturbance (4.1) with finite energy can be investigated assuming an initial &shaped 
elevation, If,however, we are interested in the decay of the wave, it is necessary to carry 

out additional investigations. 

4.3. Let us examine plane motion of fluid induced by pressure impulses 

Corresponding calculations of first terms in the asymptotic expansion for 
for the elevation of the free surface 

(4.W 

13 4 0 give 

In analogy to the procedure used in the example 4.1, we express 5, in terms of paraw 
bolic cylindrical functions 

(4.36) 

The functions 8, are determined in (4.10) and the functions z in (4.4). From this 
we have for wis 1 

ao1. = --1, nXi = --15, aI2 = 45, aI3 = -15, usi=-&, us2 = 630, as3 = -3150 

app = 4725, ae5 = -945 t cp = arctg 1 x I b-l, y1= e%*ts(zz + by 

III the case x >> 1 and 01 > 1 we obtain from (4.37) 
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4.4. Let us examine the case of motion induced by an impulse of normal srress con- 
centrated in a point. By passing to the limit for b -, u in formulas (4.35). (4.36), by 
returning to dimensional variables and omining the indices, we find 

For 0 gP 1 it follows 

Formulas (4.39) and (4.40) determine the first terms of asymptotic expansion for the 
elevation of the free surface in the case where the motion was induced by an impulse 
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of normal stress concentrated in a point. 
4.5. Let us examine now the case of spatial fluid motion under the action of an ini- 

tial pressure imp&e and initial elevation of the free surface given in the form 

A b 
b ‘* = -% (b% + r2)% 6 (t), E* = & -Jt (b2 + $)% ’ r2 = z2 + y2, b > 0, 

A’=p $ A, B’ = asB (4.41) 

Here A’ is the magnitude of the pressure impulse and B’ is the volume of elevated 
fluid. 

Corresponding calculations for the elevation of the free surface give 

5 
k==o 

- 4 i (e 1/T)’ t;f)* .$) = i A, ($.%&?!$ -&- 

k=o w-0 7 

s(k) = &I___ (by P+l+k 1 1 
k (h)! abn+l+fi v/b2’ Ao=-p Al=O, At=-1 

A,=& Bo=+, Bl=O (4.42) 

Bs== 
2n 2n 

-2ni, B,=Y 
- 16 (n + 1) Z2” (2n + i)l 

h-j-2 Asac (4n + 5)1! 
- 8 nZan (2n)l 

’ B8-~(4n +3)11 

(Here and in the following text the superscript (1) indicates that the corresponding 
expression is obtained from the action of the initial pressure impulse, while superscript 

(2) indicates the effect of initial elevation of the free surface.) 
It follows that in the case of actions concentrated at a point (b -, 0) we obtain (Irr 

dimensional variables) 

G=o, 2, 4) 

[ (2n + 1 + 1)!!]2 
(- i)n (4n + i)! (4n + 2 + i/z) (i = 0,2,4) 

(2) s 9s 

n24n 02n t 

=_E; q3n 

(8n + 3)!! (4.43) 
n=s 

'11 
(1) = $’ = 0, 0 = gPr’ 

The series in (4.43) converge for any fixed o. The solution (4.43) can be represented 
in the form 
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- z + &) Fl+ (& - $2 - y&j J&s,, + 

Here, after the expressions for Hil) and H’s”) , their asymptotic representations for 

o s 1 are given in parenthesis 

Fr 3: Ja,,Jt,, - J_t/;l_i,,~ FI = Js,,J_,,, f Jt,i,J-I!,, J, = JwW) 

In order to obtain formulas (4.44), we represent the expressions entering into (2.14) 

in the following form: 

Now, according to rules of operations on transforms ( 13, 143, we have 

The functions c$r) and 5:) are expressed by Bessel functions [16]. Substituting these 
expression2 into (4.46). we find the analogous expressions for I$,), and a$, which then 
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leads to formula (4.44). 
Asymptotic representations for H(,‘) and Hf) are obtained in a manner which is ana- 

logous to the procedure for obtaining asymptotic representation of function &in the 
plane case (formulas (4.16) and (4.17) ). The difference is only that in the spatial case 
the Bessel function is replaced by its asymptotic expansion with a remainder term (201. 

From (4.44) for v = 0 we obtain results for the ideal fluid [I65 From formulas (4.43) 
and (4.44) we derive 

E 
Ag PE 

--7 si 
BgPE 

2 ‘2 at+ $+~acos+, 74% 

Formula (4.42) determines the first terms of the asymptotic expansion for the eleva- 
tion of the free surface in the case where the external action is given in the form (4.41). 
Formulas (4.43), (4.44), (4.47) and (4.46) give the first terms of the solution in the 
case where the pressure impulse and the initial elevation of the free surface are concen- 
trated in the origin of coordinates. 

Compared to analogous formulas obtained in [IS], formulas (4.43) and (4.44) differ 
by the presence of a term proportional to v’ll and in the form of functions with terms 
proportional to v and vs. 

The authors thank L, B, Tsariuk and V. I. Iudovich for their help in the work, I. I. Voror 
vich and I, B. Simonenko for discussion of results and attention to the work, and also 
V. V. Musatov who made a number of useful comments. 
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